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SUMMARY 

Shepard’s method of metric interpolation (moving least-squares) was explored 
to model retention data as a function of several experimental variables. It is shown that 
the previously applied mechanistic retention model can be replaced by the empirical 
method of metric interpolation without loss of information with respect to modelling 
of the retention data and to evaluating optimum conditions for separating a seven- 
component mixture of amino acids and dipeptides. The moving least-squares method 
can be used even in case of irregularly spaced data. 

INTRODUCTION 

Unattended optimization of chromatographic separations is carried out now- 
adays by retention modelling of individual solutes followed by evaluating the most 
appropriate conditions computationally. Mechanistic, semi-empirical or empirical 
retention models are used to tackle a specific separation problemlp3. 

For solving practical chromatographic optimization problems, most benefit is 
gained from retention modelling that (i) is very adaptable to different retention 
mechanisms, (ii) enables several variables to be handled simultaneously and (iii) can 
treat irregularly spaced variable data. Therefore, a multi-dimensional, empirical 
modelling technique based on data interpolation will be the method of choice. 
Multi-dimensional interpolation is known to be based on polynomial or spline 
interpolation. 

Although both methods have been used in chemometrics435, there are several 
drawbacks with these methods in the present context. Polynomial interpolation is not 
adaptable to all shapes of hypersurfaces. Spline interpolation lacks practicable 
solutions for handling dependences with more than two variables and with irregularly 
spaced data. In a more recent paper6, metric multi-dimensional interpolation based on 
the moving least-squares (MLS) approach7s8 was succesfully applied to the opti- 
mization of high-performance liquid chromatographic (HPLC) separations. The MLS 
method is essentially based on an inverse distance equation. It can deal with as many 
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experimental variables as necessary, and also there are no problems with the treatment 
of irregularly spaced variable data. 

In order to judge the general performance of metric interpolation, in this paper 
retention modelling of diprotic species by the MLS method is compared with earlier 
results obtained with a semi-empirical model’ based on distribution and protolysis 
equilibria. 

THEORY 

Let F(P) be a function of the point P=(xl, x2, . . . x,) defined for all P in the 
m-dimensional real space R”. Then an interpolant based on Euclidian metric is defined 

by 

U(P) = i Fi n rpj (P,Pj) / i raj (P,Pj) 
i=l iz 1 i=l 

where 

r(P,Pj) = [(XI - Xlj)2 + (X2 - X2j)' + ” + (X, - Xmj)‘]li2 

(1) 

(2) 

U(P) = 
Fi = 

r(P,Pj) = 
P = 

2 1 

Xj = 

Xij = 

n = 

m = 

interpolated functional value at point P, 
value of Fat the knot i; 
Euclidian distance between P and Pj; 
point of interpolation; 
knot (here the measuring point); 
weighting factor of the Euclidian distance; 
coordinates of interpolation points; 
coordinates of knots; 
number of knots; 
number of variables. 

The interpolation method is essentially a weighted averaging procedure that can be 
applied to one (m= 1) or many independent variables likewise. 

Some special properties of the method can be discussed: 
(a) All interpolated values will be smaller than the maximum knot value used and 

greater than the minimum knot value. 
(b) No interpolation will be feasible at the knots as the Euclidian distance will be 

0. At these positions the actual value of the knot is to be used. 
(c) The shape of the hypersurface can be tuned by the weighting factor pin eqn. 1. 

This will be demonstrated under Results and Discussion. 
(d) For computing the interpolation points, as many knots as required can be 

used. The best results are obtained by using the knots closest to the interpolation point. 
(e) Interpolation can be based on both regularly and irregularly spaced data (see 

below). 
In some instances it was found with the interpolant of eqn. 1 that the curves 

undulate severely between the knots. This will be incompatible with the mecha- 
nistically expected functional dependence in many situations as here for chromato- 
graphic retention modelling. To reduce such undulations inherent in the interpolant of 
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eqn. 1, Shepard’ proposed for the special case of all Bj = 2 a technique for 
interpolating to given first partial derivatives according to the following equation 
(bivariate case considered with P(x,y)): 

u(p) = i rFi + Ci (X - Xi) + FyiCj - _Yi)]/Vf 
i=l I 

fl l/Y: (3) 

with 

Fyi = g 

ay P=Pi 
The partial derivatives can be estimated from local planar approximations of the 
general model 

M(x,y) = a + bx + cy (4) 

where a, b and c are regression parameters. 

RESULTS AND DISCUSSION 

Mechanistic retention modelling 
As described in an earlier paper’, the separation of diprotic substances, such as 

amino acids and dipeptides, can be described by a mechanistic (perhaps more 
semi-empirical) model that relates relative retention of the solutes (dependent variable) 
expressed by the capacity factor, k’, to the mobile phase variables pH, elution strength 
(methanol content of the aqueous mobile phase) and ionic strength as the independent 
variables. This model is based on protolysis and distribution equilibria constants and 
for the k’ dependence on the most important variable, pH, is 

(5) 

where kO, kl and k _ 1 are the distribution coefficients for the species HS (partially 
undissociated), H2S (protonated) and S (deprotonated), respectively, and K,, and Ka2 
are the consecutive protolysis constants. 

As both the distribution coefficients and the protolysis constants depend 
additionally on the content of the organic modifier and on the ionic strength of the 
mobile phase, a complicated model is necessary to tit the experimentally obtained 
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retention data. In the complete model, six linear regression parameters and seven 
non-linear parameter are to be estimated. 

Examples of applying the mechanistic model according to eqn. 5 are given in Fig. 
1 for the retention of anthranilic acid (1A) and of L-leucyl-L-tyrosine (1 B) as a function 
of pH and the methanol content of the mobile phase. As the bivariate case is most 
illustrative, the third variable, ionic strength, was fixed at 0.1 A4 in this study. 

Computation of these hypersurfaces is based on eighteen experimental values of 
k’ measured at pH 2,3,4, 5,6 and 7 and at methanol contents of lo,20 and 30% (v/v) 
(Fig. 2). 

Moving least-squares modelling 
In order to apply the MLS approach to the data, first the different scales of the 

variables pH and elution strength have to be normalized somehow to make 
calculations of the Euclidian distances in the space of variables comparable. In the 
present instance, normalization of the experimental variables is carried out linearly by 
transforing them to the interval [O,l]. 

For interpolation with eqn. 1 (without considering the partial derivatives), the 
four knots closest to the interpolation point have been chosen (Euclidian distance 
measure). The influence of the weighting factor (cf, eqn. 1) was studied for B-values of 
0.5, 1, 2 and 3. Fig. 3 shows the results when using /?-values of 0.5 (A) and 2 (B) for 
modelling the retention of anthranilic acid. As can be seen, the shape of the 
interpolating curves approaches the mechanistic model more closely (Fig. IA) if the 

Fig. 1. Retention of (A) amino acids (anthranilic acid) and (B) dipeptides (L-leucyl-L-tyrosine) as a function 
of pH and methanol content of the mobile phase at an ionic strength of 0.1 M. MeOH = methanol. 
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Fig. 2. Experimental design for modelling the retention behaviour as a function of pH and methanol content. 

p-values increase. At still higher B-values ( > 2) the interpolating function behaves like 
a step function. 

A model that compares better with the mechanistic model can be obtained by 
using eqn. 3 considering the partial derivatives in the interpolant. The plot obtained 
this way is shown in Fig. 4A for anthranilic acid and as a second example also for the 
dipeptide L-leucyl-L-tyrosine (Fig. 4B). The similarity of the hypersurfaces modelled 
with the complicated mechanistic model (Fig. 1) and the MLS method (Fig. 4) is 
satisfactory. 

Fig. 3. Modelling of the retention behaviour of anthranilic acid with the MLS method (eqn. 1) at weighting 
factors p of (A) 0.5 and (B) 2. 
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Fig. 4. MLS modelling of (A) anthranilic acid and (B) L-leucyl+tyrosine retention by considering the partial 
derivatives according to eqn. 3. 

Irregularly spaced data 
For demonstrating the situation where irregularly spaced data occur, the 

anthranilic acid data were recalculated by omitting the knot at pH 4.0 and 20% 
methanol. In this instance interpolation is performed in the same way as before, i.e., 
the four closest knots are selected for applying eqn. 3. 

Fig. 5 represents the hypersurface obtained from this case. Although the 
influence of the missing point is clearly evident, the general shape of the surface has 
been retained. 

k’ 

Fig. 5. MLS model of anthranilic acid by omitting experimental point at pH 4 and 20% methanol. 



MODELLING CHROMATOGRAPHIC RETENTION DATA 459 

TABLE I 

OPTIMUM CONDITIONS FOR SEPARATION OF A SEVEN-COMPONENT MIXTURE EVALU- 

ATED BY DIFFERENT MODELLING TECHNIQUES AND THE MINIMUM RELATIVE RE- 
TENTION AS THE OBJECTIVE CRITERION (I=O.l) 

Technique PH Methanol (%) Optimum relative 
retention of the 
worst separated pair 

MLS (without partial 4.82 11.05 1.46 

derivatives, eqn. I) 
MLS (with partial 4.95 10.00 1.45 

derivatives, eqn. 3) 
Mechanistic model 5.08 11.05 1.37 

Evaluation of optimum separation conditions 
As a means of further quantifying the performance of the MLS method in 

comparison with the mechanistic model, the optimum chromatographic conditions for 
separating a seven-component mixture’ were evaluated with respect to the pH and 
methanol content at a constant ionic strength of 0.1 M. 

From the retention values, k’, of all seven components measured at the 
experimental points given in Fig. 2, the relative retentions are computed for all pairs of 
solutes: 

a = k; 1 k; with i#j 

and the minimum relative retentions, Cl,inr are then found. 
As in the present instance several local optima exist’, the gobal optimum is found 

as the maximum value of all the minimum relative retention values. The gobal optima 
evaluated with different modelling techniques are given in Table I together with their 
maximum relative retention values. The agreement between the mechanistic model 
and the MLS approach with or without using partial derivatives is within 0.26 pH unit 
and 1.05% methanol content. This indicates an excellent agreement, which is also 
reflected by a difference plot of the minimum CI values between the mechanistic model 
and the MLS modelling with consideration of partial derivatives (Fig. 6). 

213 
70 

Fig. 6. Difference plot of the minimum relative retention values, amin, of the mechanistic and the MLS 
approaches. 
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CONCLUSION 

The method of moving least-squares can be used as a very general and simple 
alternative method to mechanistic modeling of the retention behaviour of solutes in 
dependence on chromatographic variables. One advantage of MLS is the empirical 
nature of this modeling technique, i.e. any retention mechanism can be described with 
the same algorithm. The second advantage derives from the fact that regularly as well 
as irregularly spaced data can be handled enabling simultaneous and sequential 
optimization strategies to be followed likewise. Applications of the MLS method 
within the frame of optimization software can be found in ref. 6. 
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